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Abstract

This paper describes a novel approach to the problem
of recovering information from an image set by comparing
the radiance of hypothesised point correspondences. Our
algorithm is applicable to a number of problems in com-
puter vision, but is explained particularly in terms of recov-
ering geometry from an image set. It uses the idea of photo-
consistency to measure the confidence that a hypothesised
scene description generated the reference images. Photo-
consistency has been used in volumetric scene reconstruc-
tion where a hypothesised surface is evolved by considering
one voxel at a time. Our approach is different: it repre-
sents the scene as a parameterised surface so decisions can
be made about its photo-consistency simultaneously over
the entire surface rather than a series of independent deci-
sions. Our approach is further characterised by its ability
to execute on graphics hardware. Experiments demonstrate
that our cost function minimises at the solution and is not
adversely affected by occlusion.

1 Introduction

Working in scene space on computer vision problems is a
relatively new approach that confers many advantages over
feature-based algorithms. A number of these techniques
rely on pixelwise comparison across an image set to recover
information. These comparisons are usually carried out to
find evidence to support or reject an hypothesised set of pa-
rameters. Repeated application of this process with differ-
ent configurations allows conclusions to be drawn about the
parameter space. The key to these approaches is pixelwise
comparisons: a mathematically straightforward but compu-
tationally expensive process that requires computing occlu-
sions and comparing projections of points.

One application of the graphics-based technique is to-
wards the recovery of static geometry from a set of refer-
ence images. Recovering geometry from images has, in
general, focused on computing correspondences between

features in the reference images. These features are used
to calibrate the cameras and compute a reconstruction. The
quality of the camera calibration crucially depends on the
accuracy of these features. In contrast, the graphics-based
approach compares synthetic images of a hypothetical scene
with the reference images. There are a number of ad-
vantages to this approach, including the ability to recover
scene shape without explicitly determining dense corre-
spondences and its capacity to consider global structure
when making local changes.

Space carving-class algorithms, for example, use a
photo-consistency cost-function to validate a hypothesised
surface by considering the projection of each scene point
into the reference images [3] [11] [5] [4]. They begin with a
conservative, initial hypothesis that is provided by the user
and guaranteed to encompass the true geometry. A carving
iteration validates every point on this surface by comparing
its projection with the reference views. A point is consid-
ered valid if its projection fits a particular light model in all
images where it is visible; such points are said to be photo-
consistent. Inconsistent points are thought to come from
disparate points on the reference surface. Removing in-
consistent points creates a new hypothesised surface, which
in turn changes its visibility and therefore requires further
image-based comparisons until it converges to a state where
no further points are removed.

Smelyansky et al use a similar basis to recover a height-
map and make small changes to camera parameters from an
initial feature-based estimate [12]. Their approach consid-
ers entire images rather than determining photo-consistency
for each point, but they do not model occlusion and can
therefore compute the derivative image with respect to
scene and camera parameters. New views are generated by
applying the image derivative to the last synthetic image.

Both space carving and Smelyansky’s approaches treat
reconstruction as a problem of colouring a hypothesised
scene and comparing the results with the reference im-
ages. Computing the photo-consistency and generating new
views involves finding the unoccluded projection in each
image of a sub-set of the surface. Determining occlusions
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can be expensive, particularly if the scene structure is time-
consuming to traverse or it is not possible to optimise the
number of visibility tests. Searching detailed volumetric
structures can be time-consuming because a large number
of volume elements must be scanned to confirm that no
opaque regions are closer to the camera than a given point.

Generating synthetic images from geometry described
by triangles has received considerable attention from hard-
ware vendors to the point where powerful commercially
available graphics hardware—capable of processing mil-
lions of textured triangles per second—is relatively inex-
pensive [13]. Modern Graphics Processing Units imple-
ment a pipeline organised in a series of transformations,
clipping and rasterisation steps. Surfaces represented by
triangles are sent to the pipeline as a stream of vertices
where they are transformed and clipped by a vertex pro-
cessor. The transformed triangles are rastered into a col-
lection of fragments. This process linearly interpolates ver-
tex attributes—such as texture coordinates computed by the
vertex processor–and binds the new values to each frag-
ment. The fragment processor uses these attributes to ap-
ply colour to the frame-buffer; this may involve referring to
texture elements (texels) from the currently bound textures.
The fragment processor is capable of performing operations
on the fragment attributes with the values sourced from the
frame-buffer or other texture units.

This paper presents a method that uses graphics hard-
ware’s ability to create synthetic images from geometry to
reason about the inverse problem of finding geometry when
given a set of reference images. Rather than using a volu-
metric model like space-carving based algorithms, our ap-
proach is more like Debevec’s Façade by using a scene-
graph to constraint the reconstruction process [6]. The
scene-graph encapsulates known geometric primitives with
unknown parameters. It constrains the recoverable set of
scenes, which is useful because an infinite set of scenes can
be photo-consistent with a finite set of images [8].

The scene-graph approach effectively correlates what the
system expects to see with what is actually visible in the
reference images. This has two advantages over voxel-
based approaches. The key advantage is that our approach is
tractable in large architecture-based scenes that would oth-
erwise require a prohibitively large number of voxels. The
second advantage is that it generates spatially coherent re-
constructions because photo-consistency is measured over
a large surface rather than making hundreds of independent
photo-consistency decisions.

The scene graph’s primitives and their relationships are
provided by the user. Both Façade and our approach aims
to find the transformations within the scene-graph that best
fit the primitives to the reference views. Façade finds these
transformations by minimising the reprojection error of the
scene-graph edges against its corresponding edges marked

by the user in the reference images. Rather than only con-
sidering edges, we exploit the photo-consistency constraint
by texturing the reference images over the scene’s surface
and measuring how well this textured scene-graph recre-
ates the reference views. This has three advantages over
Façade. Firstly, the user is not required to correlate edges
in the reference views with edges in the scene-graph. More
importantly, reprojection error is measured over the entire
surface of the scene-graph rather than just its edges. This
would allow reconstructions in views where there are in-
sufficient primitive edges, but sufficient surface that can be
used to measure photo-consistency. (A close-up of the edge
of a building is an example of this case.) The most signifi-
cant advantage, however, is our algorithm’s ability to model
occlusion, assign radiance to the hypothetical surface and
compute the surface’s photo-consistency metric entirely on
graphics hardware. This leverages the inherent parallelism
from an otherwise idle computational resource.

We have previously investigated using a scene graph to
transfer pixels from one reference image to another as a
measure of photo-consistency [1]. This approach projected
one image onto the scene and rendered the result from a
second view. The set of pixels visible to both cameras was
used to determine the photo-consistency of the hypothesised
parameters; this process was repeated for all stereo pairs of
reference views. We discovered that the disadvantage of this
approach was its tendency to push the scene parameters so
the surface moved outside the visual hull. Since the photo-
consistency metric can only compute the consistency of vis-
ible pixels, surface elements outside the visual hull cannot
contribute to the photo-consistency error and therefore the
scene cannot be invalidated. This visibility bias cannot be
overcome by penalising occluded pixels because we assume
the scene has significant occlusion. Furthermore, surface
based visibility constraints cannot be applied in this frame-
work because only the projections of surface points were
compared and thus there was no mechanism to monitor the
projection of a scene-point beyond a given stereo pair. We
reasoned that the next step was to consider colour consis-
tency over the scene surface while simultaneously using all
reference images. This would allow constraints on the vis-
ibility of objects—for example, imposing a constraint that
every point on the surface must be seen by at least two cam-
eras. This penalty would invalidate parameters that push the
geometry outside the visual hull.

This paper describes an approach to find parameters for
a user-supplied scene-graph that best fit the reference im-
ages. Our approach uses photo-consistency to measure the
fitness of a hypothesised scene configuration. It works by
assigning radiance to the scene’s surface and comparing
the average radiance from all views with the contribution
from each view. Space-carving also uses the idea of photo-
consistency to evolve a surface hypothesis, but it considers
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Figure 1. A reference image and its scene-
graph provided by the user.

only a single voxel at a time, and therefore makes a deci-
sion independent of its effect on the rest of the geometry.
Our approach is different: it considers the global effect of
changing a scene parameter because photo-consistency is
simultaneously measured over the entire surface. Repeated
application of our approach to different scene configura-
tions allows us to draw conclusions about the scene’s shape.
Computing the photo-consistency over the entire surface is
made tractable by exploiting graphics hardware’s ability to
generate synthetic images from geometry.

2 The Scene Graph

The input to the system is the set of reference images and
an acyclic parameterised scene graph provided by the user.
The scene graph describes how the reference geometry is
constructed from primitive shapes such as boxes, pyramids
and spheres. Geometry nodes are connected to a series of
parameterised transformation nodes such as translation, ro-
tation and scale. Each geometry node has a model-view
matrix to transform its local coordinate system to the world
coordinate system; it is given by the post-multiplication of
the transformations along the path from the root node to
the given geometry node. The model-view matrix is de-
pendent on the scene-graph parameter vector, for associ-
ated with each transformation node is a set of parameters to
model the unknown transformations. Not all transformation
parameters are necessarily unknown—a primitive might be
constrained to a plane or rotate about only one axis, for ex-
ample. In these cases, the structure of the graph places con-
straints on the relationships between as their stacking order
and alignment. Furthermore, the parameters may be con-
strained by expressions in terms of other parameters such
as limiting the wings of an air-plane to some constrained
set of suitable ratios.

Figure 1 is an example scene-graph for a house refer-
ence view. It consists of a box to model the house’s base,
a prism to model the roof and a box to model the chimney.
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Figure 2. Texturing

The roof and chimney primitives are connected to the house
base’s transform node so they will inherent any changes to
the base’s transform. The transform applied to the roof is
given by IThTr, where Th is the transform applied to the
base and Tr is the roof’s local transformation. The house
base transformation could be described by scale, translation
and rotation about the vertical axis while the roof transform
would only require one scale factor to represent the height
of its apex. The roof transform would also have a translation
using the house’s vertical scale to ensure its base is always
coplanar with the top of the house base.

Each geometry node in the scene-graph is a renderable,
fixed-size triangle mesh. Associated with each vertex is a
position in its local coordinate system and a coordinate in
texture space. A mesh’s texture map is somewhat arbitrary
(since there is not always a “good solution” [14]); the only
constraint is that no two triangles in texture space can over-
lap. A triangle mesh can be defined to use any number of
textures spaces. This property would be particularly impor-
tant for meshes that are quite large in the reference views.
An example texture map used in our system is illustrated
in Figure 2: the advantage of this approach is it uses one
texture space, yet the entire texture space is used.

Each triangle mesh has a model-view matrix defined by
the path from the roof node to the given geometry node.
Throughout the rest of the paper, we will use the term
‘world triangle’ to refer to the triangle in the local coor-
dinate system transformed by the model-view matrix and
‘texture triangle’ to denote the triangle defined in texture
space. ‘Triangle’ simply refers to the structure containing
both triangles in the scene graph.

3 The Photo-Consistency Metric

The set of textures used in the scene-graph defines the
structure’s surface. The challenge presented by the photo-
consistency constraint is to find suitable texture images and
scene-graph parameters so the model generates the refer-
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Figure 3. Photo-consistency is a property
held by real scenes and is used to verify a
hypothetical surface.

ence images when imaged from the reference camera po-
sitions. By definition, the generative model has photo-
consistent textures. A point in texture space (or, texel) is
photo-consistent if can be assigned a radiance function that
models the point’s projection in all reference views. This
vector is usually a single colour to fit the diffuse light model,
although more complicated models such as Phong [7] and
Blinn [2] could be used.

If we restrict the class of reference scenes to those that
can be modelled by only diffuse light, then the unoccluded
projection of a point should be similar colour in every im-
age. Consequently, a point that does not project to a simi-
lar colour in each image is said to be inconsistent and rea-
soned to not be part of the reference scene (see Figure 3).
We exploit this colour constraint by constructing a view-
dependent surface texture for every camera and comparing
its consistency with the composite texture created by aver-
aging each texel in the images where it is visible.

4 Computing Photo-Consistency

Given a reference image and hypothesised scene con-
figuration, a view-dependent texture is created by back-
projecting the reference image onto the scene. Every sur-
face point visible in the reference image is assigned the radi-
ance under its projection in the reference image; otherwise
the point is classed as occluded and its radiance is unde-
fined. Given a view-dependent texture from each reference

image, the composite is computed by averaging the radiance
assigned to each point. This process results in two maps:
the first is the average radiance of each point’s projection in
all images that can see it, and the second map identifies the
number of cameras that contributed to the point’s average
radiance.

If the geometry and scene parameters are correct, then
every visible point will have a similar colour to every refer-
ence view. Consequently, inconsistencies between the com-
posite texture and a reference view suggests the scene pa-
rameters are incorrect. The consistency of the composite
texture to a view-dependent texture is given by the distance
in colour space of every corresponding texel. This metric
is used to drive an optimisation process to find the set of
scene-parameters that maximise consistency with respect to
all images. An overview of this process is illustrated in Fig-
ure 4.

4.1 View-Dependent Textures

The view-dependent texture is created by transferring ra-
diance from the reference image to every triangle in the tex-
ture. This is implemented on graphics hardware by render-
ing each texture triangle and using its world triangle pro-
jected into the reference image as its texture map. The
texture coordinate is the world coordinate transformed by
T = HPM , where P is reference camera’s projection, M
is the model-view matrix associated with the triangle and H
is the homography to map image space to texture space. The
world triangle’s projection in the reference image is mapped
to the texture triangle by

T (ci) ←− rI(HPMv′i). (1)

Here, r(.) is a radiance function that returns [p, α = 1]
(where p is the pixel on the reference image I) if the point
vi is not occluded, and red = green = blue = α = 0, otherwise.
Occlusion is with respect to the hypothetical scene structure
and reference view. It is implemented in graphics hardware
by rendering the scene from the reference viewpoint and
binding its depth buffer as a shadow map [10]. An example
of a view-dependent texture is illustrated in figure 5.

4.2 The Composite Texture

The composite texture is built from the set of view-
dependent textures by blending each texture layer in the
frame-buffer. The composite colour for a texel at [u, v]�

is the average colour from the set of corresponding texel
{Ti(u, v) | Ti(u, v)α �= 0}. Computing the composite
texture in graphics hardware is readily implemented with
2n+1 render passes. Each texture is rendered to the frame-
buffer to count the number the number of samples per texel,
where each pass scales the texture’s α-channel by n−1. The
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Figure 4. Photo-consistency is determined by constructing a view-dependent texture for each view
and comparing it with the composite texture.
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Figure 5. The view-dependent textures and
the composite texture.

frame-buffer’s α channel is then inverted with a fragment
program; and, finally, the textures are rewritten to the frame-
buffer and blended with the source and destination weights
taken from the frame-buffer α-channel (as α and 1 − α re-
spectively) [9]. Figure 5 is an example composite texture
from four provided view dependent textures.

4.3 Photo-Consistency and the Visibility Con-
straint

The composite texture is simultaneously the union of
points seen in only one reference image and the average ob-
servation for points seen in multiple images. To determine
the photo-consistency of the composite texture with respect
to the reference images, it is compared with each view-
dependent texture. The consistency of a texel is given by
the average difference between the composite texture and

each view-dependent texture; but a penalty is applied if less
than an a priori number of views can see the texel. Assum-
ing every scene point is seen by at least two views prevents
the optimiser from pushing the geometry outside the visual
hull.

4.4 Removing Error from Sealed Surfaces

While the visibility constraint penalises geometry that is
not visible by sufficient number of cameras, some parts of
the surface are not visible by design. For example, the top of
the house base is coplanar with the bottom of the roof for the
scene in Figure 1—these surfaces are hidden because they
are part of primitive objects that are stacked to build more
complex shapes. If left unchecked, these self-occluding sur-
faces erroneously contribute to the occlusion penalty and
could lead to some tolerance of photo-inconsistency to min-
imise self-occlusion. Removing the occlusion penalty from
coincident surfaces will treat the scene as a contiguous sur-
face, giving an accurate understanding of the surface’s oc-
clusion.

Coincident surfaces are identified by rendering the scene
for each triangle in the scene-graph from its point of view.
At each iteration, the scene is transformed so a given tri-
angle maps to its texture triangle in along the X/Y plane.
This map is decomposed into a transformation that maps
the world triangle to the X/Y plane followed by an affine
homography to further map its world triangle to its texture
triangle. With clipping planes configured to clip to the edge
of the textured triangle, points along the triangle coincident
with the scene-graph are marked by rendering the scene and
accepting fragments with z = 0.

4.5 Accumulating Photo-Consistency

A photo-consistency map is generated for each iteration
to compare a view-dependent texture with the composite
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Figure 6. Two reference images used in the
synthetic tests.

texture. Each texel in this map represents the consistency
of its corresponding surface element with respect to a sin-
gle reference view. The average consistency over the set
of reference views is accumulated in the frame-buffer by
blending each view-dependent map toegther. The per-pixel
visibility penalty, applied to every texel by the process in
Section 4.3, is removed from coincident surfaces by the pro-
cess in Section 4.4 while rendering the scene with material
α = 0. The result stored in the frame-buffer’s α channel is
the per-texel photo-consistency; it is copied to system mem-
ory and summed to give the photo-consistency for the tex-
ture. This process is repeated and summed for all textures
in the scene-graph.

5 Results

The photo-consistency cost function was implemented
with OpenGL 1.5 to determine how it behaves when the
scene-graph parameters are changed. Synthetic tests were
used to provide ground truth as we are still evaluating
whether this approach is valid. We constructed a synthetic
test involving four cameras and a box on a plane where the
cameras orbit the box. Every point on the box is visible
by at least two cameras. The reference images were gener-
ated with the Persistence of Vision ray-tracer; two of these
images are illustrated in Figure 6.

The test scene has four parameters: the box’s location
along the plane, its rotation, and scale. (Scale can be rep-
resented as a single parameter since the box’s texture sug-
gests its dimensions are 4s × 6s × 2s, where s is the size
of the squares on its surface.) We defined the world coor-
dinate system so the box is at its origin, has zero rotation
about the y-axis and a dimension of 2× 3× 1 units. We as-
sume the cameras have been calibrated (although changing
camera parameters is certainly possible in our system and
will be investigated in the future). We performed a number
of tests to determine how the photo-consistency metric be-
haves as scene parameters change. Some of the parameters
are assumed to be known in these tests so that the graphs

(a) Translation with known rotation and scale. Truth is x = 0 and y = 0.

(b) Rotation vs scale with known translation. Truth is at θ = 0 and s = 1.

Figure 7. Exploring the photo-consistency
metric over a range of scene parameters.

represent cross-sections of four-dimensional space.
Figure 7(a) illustrates the effect of changing the box’s

translation while assuming rotation and scale are correctly
known. Figure 7(b) illustrates the effect of changing the
box’s rotation and scale while assuming the translation is
correctly known. The peaks in both graphs are caused by
the visibility constraint; both graphs are minimised at the
true solution. Figure 8(b) illustrates three cross-sections
taken from the rotation/scale graph to clearly demonstrate
the effect on rotation at various scales and that the cost is
minimised at the true solution.

Figure 8(a) illustrates the effect of translation along
one axis when scale is incorrectly known. The photo-
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Figure 8. Photo-consistency cross-sections.

consistency metric is still minimised at truth (scale=1). The
graph when the box’s scale is under-estimated is linear
when the box is visible because there is less texture vari-
ation over the box’s surface.

5.1 Synthesising Novel Views

The reconstructed scene can be imaged from novel view
points by applying the composite texture over the surface.
Figure 9(a) is an example novel view where the scene is
textured with its composite texture. The black holes in the
ground texture are regions not seen in any of the reference
views. Figure 9(b) is the same view point but textured with
its error surface. Here, black regions represent areas of high
photo-consistency, white represents regions of low photo-
consistency, and shades of dark red through to yellow rep-
resents increasing inconsistency.

The unwrapped composite and photo-consistent texture
space is illustrated in Figures 10(a) and 10(b) respectively.
Figure 10(b) indicates that the cube’s texture space has a
large, seemingly photo-consistent region in the top-right
of its texture space—this region comes from the surface
that is coplanar with the ground-plane and is therefore al-
ways considered photo-consistent. In contrast, the ground-
texture has more photo-inconsistent regions in Figure 10(b)

(a) A novel view of the reconstructed scene. (One of the reference cameras
is visualised in the top left corner.)

(b) The photo-consistency error surface seen from the same view-point as
9(a). Increasing shades of red represents increasing photo-inconsistency.

Figure 9. The optimised scene configuration.

than what its composite texture suggests: for example,
the corners of the ground texture are clearly the grey che-
quered ground, yet the corresponding regions in the photo-
consistency texture suggest these regions are inconsistent.
This inconsistency is caused by enforcing the visibility con-
straint since these regions are only visible in one camera.

5.2 Texture Aliasing

Our experiments show that the best reconstruction has
apparently significant levels of photo-inconsistency (illus-
trated in Figure 10(b)). This is true even when the known
parameters are used; it is caused by aliasing in texture-space
as the reference images are back-projected onto the surface.
The error introduced through aliasing may affect compli-
cated scene-graph configurations. This is not evident in our
experiments, largely because the size of the box in the im-
ages is relatively large. Experiments with blurring the ref-
erence images somewhat mitigated the aliasing but did not
dramatically change the shape of the consistency manifold.
Future work would investigate the effect of aliasing on more
complicated scenes and develop better sampling algorithms
to limit its effect.
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(a) A reference image and its scene-graph provided by the user.

plane texture cube texture
(b) The reconstruction error texture.

Figure 10. The textures from the optimised
scene configuration.

6 Conclusion

There are a number of advantages to using a graphics-
based approach towards recovering scene information. The
key advantage is that changing parameters has a global con-
sequence to the surface’s photo-consistency metric. This
approach shifts the problem from image-processing into
one where changes are made in scene-space. Previous work
with photo-consistency evolved a volumetric structure by
considering one voxel at a time. Consequently, decisions
based on a voxel’s photo-consistency are independent from
decisions made to its neighbours. Our approach consid-
ers photo-consistency over the entire surface. We conse-
quently recast the problem in terms of finding a scene-graph
parameter vector that best generates the reference images.
This has two advantages: firstly, reconstructions are spa-
tially coherent because photo-consistency is measured over
the entire surface; and, secondly, our approach can be ac-
celerated using graphics hardware. Whereas our previous
cost-function was unable to properly account for occlusion,
the cost-function presented in this paper does not push ge-

ometry outside the visual hull, provided that a conserva-
tive estimate of a surface’s visibility can be made. Our ex-
periments demonstrate that our cost-function minimises the
scene-parameters for simple scenes.
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